HomeFacebook Scrabble League Round 51 Division 13Click any result to see the two players' history
E =
Elo Value

Scroll down
for details

Seyi A
  
Elo: 4849

Pamela S
  
Elo: 5336

Anne T
  
Elo: 4791

Emma M
  
Elo: 4762

Denise L
  
Elo: 4745

Deborah A
  
Elo: 5258

Douglas T
  
Elo: 4918

Poko L
  
Elo: 4910

Damola O
  
Elo: 5302

Mutua N
  
Elo: 5119

Claire C
  
Elo: 4849

Peggy J
Elo: 4837
Peggy J
423
Seyi A
300
Elo:
+12.4
Peggy J
362
Pamela S
346
Elo:
+22.7
Peggy J
485
Anne T
345
Elo:
+10.4
Peggy J
431
Emma M
354
Elo:
+9.4
Peggy J
356
Denise L
319
Elo:
+8.9
Deborah A
522
Peggy J
300
Elo:
-2
Peggy J
446
Douglas T
373
Elo:
+14.7
Poko L
386
Peggy J
338
Elo:
-9.5
Peggy J
390
Damola O
342
Elo:
+22.5
Mutua N
401
Peggy J
351
Elo:
-4
Peggy J
479
Claire C
337
Elo:
+12.4
Progress this roundChange in Elo rating+97.9
for Peggy JohnstonBest score485 vs Anne Tomlinson
Total points scored4361 in 11 games
Average points per game396.4
Total margin336
Best margin142 vs Claire Cottle
Average margin30.5
 
Personal Bests for Peggy Johnston

Top Score: 488
vs Leila Durzi who scored 295 in round 50
 
Best Margin: 193
488 - 295 vs Leila Durzi in round 50
 
Best Joint Score: 842
387 - 455 with Quentin Dabbs Baker in round 50


Notes on Ratings
Under the Elo ratings system, the winner of a game gains a number of ratings points and the losing player loses the same number. The number of points won or lost depends on the difference between the ratings of the two players; a player will gain more points by beating a higher-rated player than by beating a lower-rated player.

Where games have been completed, the chart above shows the actual number of ratings points passed from the loser to the winner. Where games are unfinished, two numbers are shown in the form A/B. A is the number of points to be transferred if the player in the row wins and B is the number of points if the player in the column wins.

For example
Mildred
Elo 5051
If Joe wins he will gain 9.5 rating points from Mildred but if Mildred wins she will gain 14.5 rating points from Joe. Mildred stands to earn more than Joe from winning the game because Joe is the higher rated player and is expected to win more often.
Joe
Elo 5123
E: 9.5 / 14.5

In the case of a draw, the lower rated player wins points from the higher rated player, but fewer points than if he or she had won the game.

The value of each game is based on the players' rating at the start of each round. At the end of the round, the points won and lost on each game are added up and the players' rating are adjusted and rounded to the nearest whole number for the next round.

The difference in two players' Elo ratings implies an expectation of how often each of them will win when playing each other. Under the system we use:

Notes on Statistics
μ (mu) is the mean score, ν (nu) is the median score and Mo is the mode. Mean, median and mode are three different kinds of averages. The mean score is the total number of points divided by the number of games played. The median score is the middlemost score (or the mean of the two middlemost scores) when they are sorted from high to low. The mode is the most frequent score and is only helpful after a large number of games.

σ (sigma) is the standard deviation. This is a measure of how consistent the player is. The smaller the value of σ, the more consistent. 68% of the player's scores are within one standard deviation above or below the mean and 95% are within two standard deviations.

Sk is median skewness. Skewness is a measure of how asymmetrical the graph is. There are many measures of skewness; we've chosen median skewness because it's the easiest to calculate! A positive value means there are more scores above the middle of the graph than below, a negative value vice versa.